

GigaDevice Semiconductor Inc.

Proper use of UID for firmware protection

Application Note

AN073

AN073
Proper use of UID for firmware protection

2

Table of Contents

Table of Contents... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction... 5

2. Application scenario and capability analysis.. 6

2.1. Application scenario ... 6

2.2. Capability required for code ... 6

3. Process methods ... 7

3.1. Overview.. 7

3.2. Use special peripherals .. 7

3.3. Improve design method .. 7

3.4. Add redundant code ... 11

3.4.1. Reference Implementation 1 .. 11

3.4.2. Reference Implementation 2 ..12

3.5. Software encryption .. 15

3.6. Encryption chip ... 17

4. Revision history ... 19

AN073
Proper use of UID for firmware protection

3

List of Figures

Figure 3-1. Improved Design Method Schematic ... 8

Figure 3-2. Image file generation flow chart .. 9

Figure 3-3. Program running flow chart ...10

Figure 3-4. Implementation flowchart of redundant code ..12

Figure 3-5. Bug and patching bug diagram ..13

Figure 3-6. The flowchart of adding bug and patching bug ...14

Figure 3-7. Schematic of software encryption and decryption...15

Figure 3-8. Encrypted image generation flow chart ..16

Figure 3-9．Decrypt Image flow chart ...17

Figure 3-10. Schematic diagram of HASH chip connected to MCU ..17

Figure 3-11. Certification flow chart...18

AN073
Proper use of UID for firmware protection

4

List of Tables

Table 3-1. The example of executing functional code sequentially ..10

Table 3-2. The example of executing out-of-order functional code...10

Table 3-3. The example of special function code .. 11

Table 3-4. The example of common code ...12

Table 3-5. The example of adding special function ...12

Table 3-6. The example of bug code ..13

Table 3-7. The example of patching bug code example ...14

Table 4-1. Revision history ...19

AN073
Proper use of UID for firmware protection

5

1. Introduction

This application note aims to protect software code by increasing the complexity of software

code, and prevent software code from being ported to other platforms or chips.

This application note is divided into two parts. The first part introduces the application

scenarios and the capability of software code; the second part introduces how to protect

software code.

This application note is theoretically applicable to the whole series of GD32 MCU.

AN073
Proper use of UID for firmware protection

6

2. Application scenario and capability analysis

2.1. Application scenario

The GD32 MCU provide hardware read and write protection to prevent illegal reading of flash,

and this function can protect the intellectual property of firmware. However, in actual product

development or mass production, there are many application scenarios that do not require

read and write protection, such as:

 Cooperative development of product, multiple developers provide their respective code

in flash for subsequent development or mass production.

 The algorithm provider solidifies the algorithm code in flash for the customer to use.

 Users need to set parameters according to the usage environment and save the

parameters to flash.

 When the product is delivered, the software functions are still unstable or incomplete,

and it is necessary to update and iterate the software functions according to user’s

feedback.

In the above cases, the MCU usually cannot enable read and write protection, which will

cause the firmware in the flash to be easily read, ported or reversed. Therefore, in order to

prevent the firmware from being stolen or ported to other platforms, other methods are needed

to protect the firmware.

2.2. Capability required for code

In the case of not enabling hardware read and write protection, from the perspective of code

design, the code needs to have the following two capabilities:

 If the firmware is obtained from the MCU, but the firmware cannot run on other chips.

 The code need to design complexly, and third parties can not analyze it easily.

AN073
Proper use of UID for firmware protection

7

3. Process methods

3.1. Overview

The 96-bit unique device ID is unique for each MCU. When the code is bound to the UID, the

code can only run on the specified chip. Meanwhile, improving the design method, increasing

the redundant design, increasing the verification hardware and using specific peripherals can

be used to increase the complexity of the code.

The following sections describe five methods to increase code complexity. They are not

mutually exclusive, and users can use them in combination with each other.

3.2. Use special peripherals

This section describes how to increase the complexity of code by using special peripherals.

For example, when need to use UID, it is not recommend to read directly through the register,

but it is recommend to read through DMA. This method can increase the complexity of code

analysis. Similarly, the MPU and privilege levels can be used to increase the complexity of

code.

In addition, the hardware security protection can be enable, then firmware can be protected

from being read and debugged.

3.3. Improve design method

This section describes how to binds the code with MCU UID.

This method is shown as The calculation methods of code integrity include but not limited

to hash, CRC, checksum, etc. User need to define scramble method. When the first segment

of code is processed, the integrity result of all the code and the UID are used as parameters

to calculate its disorder address.

Figure 3-1. Improved Design Method Schematic. The N segments of functional code

can be load to specified address by scatter loading file, and each functional code size is equal.

Computer application read BIN or HEX file, use UID and the result of integrity calculation for

previous functional code as two parameters, use specific computing method to generate

address, and disorder N segments of functional code. Scatter loading functional code can

refer to AN075 ”Introduction of library invocation scheme based on MDK

implementation”.

The calculation methods of code integrity include but not limited to hash, CRC, checksum,

etc. User need to define scramble method. When the first segment of code is processed, the

AN073
Proper use of UID for firmware protection

8

integrity result of all the code and the UID are used as parameters to calculate its disorder

address.

Figure 3-1. Improved Design Method Schematic

out of order

and add

index table

N functional code

func1

...

Free

Add boot and

generate image

func2

funcN - 1

funcN

Out of order functional

code and index table

1

2

N-1

N

...

funcN-1

...

func1

func2

funcN

1

2

N-1

N

...

funcN-1

...

func1

func2

funcN

Main program

Finally Image

MCU

UID

Index[i]

Hash

Address

CORE

funci-1

In order to ensure the availability of the calculated result, position encoding calculation needs

to be performed based on the calculation result, and the encoding result is stored in the index

table. The final Image includes the index table, Finally, design a boot program for calculating

functi-onal code addresses, the image assemble the boot, disordered functional code and

index table as final image. The process of image generate is shown as Figure 3-2. Image

file generation flow chart .

AN073
Proper use of UID for firmware protection

9

Figure 3-2. Image file generation flow chart

Load N functional code to

specified address, each space

size is equal.

Start

Compile to generate BIN or

HEX files

Read BIN or HEX file

Using special method to

compute address, and disorder

the N functional code

Generate index table and

assemble the out of order code

Design boot program, which

can calculate the address by

special method and index table

Compile to generate BIN or

HEX files

End

Read boot BIN or HEX file

Assemble the boot, disordered

code and index table as final

image.

IDE
Computer

application

When a functional code need to be executed, according to the UID, the integrity result of the

previous code and the index table, use the same calculation method as the computer

application, calculate the correct address of the functional code. For example, the process of

executing the i-th functional code is shown as Figure 3-3. Program running flow chart, if

UID or previous code have changed, then calculate wrong address, and cause the program

incorrectly.

AN073
Proper use of UID for firmware protection

10

Figure 3-3. Program running flow chart

Start

Before executing the i

functional code

Read UID

calculate i-1 functional

code integrity

calculate the i functional

code address.

Execute the i functional

code

End

If functional code execute sequentially, the example logic is easy to understand, and it is easy

to be plagiarized. The example is shown as Table 3-1. The example of executing functional

code sequentially.

Table 3-1. The example of executing functional code sequentially

/* execute functional code */

func1();

func2();

func3();

func4();

func5();

When disorder the N functional code, the program logic is difficult to understand. The example

is shown as Table 3-2. The example of executing out-of-order functional code.

Table 3-2. The example of executing out-of-order functional code

/* define function pointer */

void (*func)(void);

/* define index address */

uint32 * index = (uint32 *)(0x0801F000);

/* calculate full code’s completeness w hen index = 0 */

AN073
Proper use of UID for firmware protection

11

uint32 * previous_ res = calculate_code_ completeness (address_full_code,full_size);

/* calculate next functional code’s address */

uint32 * address = calculate_address(getuid(),index[0], previous_ res);

func = address;

/* execute functional code */

func();

for(i = 1 ; i < N; i ++)

{

/* calculate previous code’s completeness */

previous_ res = calculate_code_ completeness (address,0x1000);

/* calculate next functional code’s address */

address = calculate_address(getuid(),index[i], previous_ res);

func = address;

/* execute functional code */

func();

}

3.4. Add redundant code

This section describes how to increase the complexity of the code by adding redundant code.

The redundant code need to bind with the UID, the result of redundant code execution will

affect the main code. If the result is abnormal, the main code will run abnormally. This section

will describes two method to achieve it.

3.4.1. Reference Implementation 1

Add special function code in software programming. The example is shown as Table 3-3. The

example of special function code.

Table 3-3. The example of special function code

function return Implementation

fun0 0 Read flash address 0 and do operation w ith UID

fun1 1 Read flash address 1 and do operation w ith UID

fun2 2 Read flash address 2 and do operation w ith UID

fun3 3 Read flash address 3 and do operation w ith UID

…. … …

funn n Read flash address n and do operation w ith UID

These functions return different value, when the value need to be called during program

design, it is obtained indirectly by calling these functions. The flowchart is shown as Figure

3-4. Implementation flowchart of redundant code.

In the case of no special function code, the normal code logic is simple and easy to

understand. The example is shown as Table 3-4. The example of common code.

AN073
Proper use of UID for firmware protection

12

Table 3-4. The example of common code

/* execute test code */

uint8_t *buf = NULL;

for (i = 0; i < 10; i++){

 printf(“%d\r\n”, i);

}

buf = (uint8_t *)malloc(200);

After adding special function, the program is bound to the chip UID. The example is shown

as Table 3-5. The example of adding special function.

Table 3-5. The example of adding special function

/* execute test code */

uint8_t *buf = NULL;

for (i = 0; i < 10 * func1() ; i++){

 printf(“%d\r\n”, i);

}

buf = (uint8_t *)malloc(100*func2());

Figure 3-4. Implementation flowchart of redundant code

Start

Design special function

code by using UID

Use special function code

in the program

Download image

The downloader reads

UID, and writes special

values to address by UID

End

3.4.2. Reference Implementation 2

This method increase the complexity of the code by adding pairs of bug and patching bug

AN073
Proper use of UID for firmware protection

13

code. After the bug code is executed, the patched bug code must be executed, otherwise the

program will be abnormal. Run the bug code and patching bug code according to the chip

UID and random number. This method is shown as Figure 3-5. Bug and patching bug

diagram.

Figure 3-5. Bug and patching bug diagram

1

2

3

n 2’

44’

The example of bug code is shown as Table 3-6. The example of bug code .

Table 3-6. The example of bug code

The example of patching bug code is shown as Table 3-7. The example of patching bug

code example.

/* bug code */

int f lag1 = 0;

void fun1(void)

{

if (1 == f lag1){

 f lag1 = 0;

 *((uint32_t *)0) = 3;

 return;

}

if (0 == f lag1){

 f lag1 = 1;

}

else if (2 == f lag1){

 f lag1 = 0;

}

}

AN073
Proper use of UID for firmware protection

14

Table 3-7. The example of patching bug code example

The flowchart of adding bug and patching bug is shown as Figure 3-6. The flowchart of

adding bug and patching bug.

Figure 3-6. The flowchart of adding bug and patching bug

Start

Generate a 32-bit

random number A

Bitwise OR A with UID

to get result B

B==0？

B is assumed to be

0x55555555

Y

N

Design 32 pairs of

bugs and patching

bug codes, recorded

in order as 0-31

1ms tick starts

counting

Execute the bug function
corresponding to the bit
where B is one every 5

milliseconds, C times

The interval is 5ms，
execute the patching bug
function n corresponding

to the bit where B is one，

read UID and A，re-

compute B and C

Current time is

(C+n)*5？

Patching bug

Y

End

Patching bug C

times？

N

Y

N

Execute the bug function
corresponding to the bit
where B is one every 5

milliseconds, C times

Bug is normal ？
Y

N

/* f ixs bug code */

void fun11(void)

{

/* time check right */

 f lag1 = 2;

}

AN073
Proper use of UID for firmware protection

15

3.5. Software encryption

This section describes how to increase the complexity of code by using software encryption

and decryption algorithm. The algorithm can be used to encrypt and decrypt functional code,

generate the key by using UID and user-defined configuration information. The encryption

and decryption algorithm can use open source library, such as the mbedTLS encryption

algorithm library for small embedded device. This method is shown as Figure 3-7. Schematic

of software encryption and decryption.

Figure 3-7. Schematic of software encryption and decryption

Encryption and

CRC or HASH

Encryption funcN-1

Encryption func1

Encryption funcN

Encryption func2

...

Boot

CRC or HASHCRC or HASH

CRC or HASHCRC or HASH

CRC or HASHCRC or HASH

CRC or HASHCRC or HASH

funcN-1

func1

funcN

func2

...

Boot

nullnull

nullnull

nullnull

null

AES KeyOriginal Image Encryption Image

Crypto

Lib

AES

key

UID & other

SRAM

CRC or

hash

funcN-1

CRC or hash

funcN-1

CORE

MCU

The computer application calculate the CRC or HASH value of each functional code, and

store the result in the reserved space. Then, each functional code is encrypted with an AES

key which haved generated by using UID and user-defined configuration information, and fill

back into BIN or HEX file. Finally, download the encrypted image to the chip. The image

generate is shown as Figure 3-8. Encrypted image generation flow chart.

AN073
Proper use of UID for firmware protection

16

Figure 3-8. Encrypted image generation flow chart

Load N functional code to

specified address, reserve

space for storing CRC or

HASH values

Start

Compile to generate BIN or

HEX files

Read BIN or HEX files

Use UID and configuration

information, and use private

algorithm to generate key

Calculate the CRC or HASH

for the functional code, and

save it into reserved space

Use the key to encrypt the

functional code

Fill the encryption content back

into the BIN or HEX files.

End

Generate image

IDE
Computer

application

Disorder N functional code

When execute boot code，it generate AES key by using the same method as computer

application, and decrypt the encrypted image, calculate the decrypted image’s CRC or HASH

value. The flowchart is shown as Figure 3-9．Decrypt Image flow chart .

Although the boot is not encrypted, it will increase the difficulty of disassembly parsing due to

the algorithmic calculation. It should be noted that the AES key can be transimit by DMA or

interrupt.

AN073
Proper use of UID for firmware protection

17

Figure 3-9．Decrypt Image flow chart

 Y

Start

Use the same method as

computer application to

generate key

Calculate specified

address

Decrypt by key and save

to SRAM

Execute code

END

Decryption CRC

Or HASH is equal ？

 Y

Error handleN

Continue to decrypt ？

N

Erase SRAM

3.6. Encryption chip

This section describes how to protect code by using encryption chip. MCU connect to hash

chip, which utilize the storage security of the hash chip.Hash chip can identify the legitimacy

of the request. This schematic is shown as Figure 3-10. Schematic diagram of HASH chip

connected to MCU.

Figure 3-10. Schematic diagram of HASH chip connected to MCU

 MCU

H
A

S
H

AN073
Proper use of UID for firmware protection

18

The certification process is shown as

Figure 3-11. Certification flow chart.

Firstly, the computer application will use the UID of MCU, the UID of HASH chip and the

custom parameters to derive the secret key for calculating the digest, and write digest into the

HASH chip. When the MCU program runs, it will generate a random number and send it to

the HASH chip, the HASH chip uses the random number, the derived key and its own UID to

calculate the digest 1. Meanwhile, MCU uses the random number, the derived key and the

UID of the HASH chip to calculate the digest 2. MCU will compares the two digests, If it is

different, it will enter the exception handling code, which enter an infinite loop or other

operations. Since HASH has the feature that it cannot be changed after writing, it can achieve

the effect of binding a HASH chip to a device.

Figure 3-11. Certification flow chart

Start

Use MCU UID, HASH chip

UID and other parameters

to generate key

MCU generate random

number to compute digest

HASH chip use key and its

own UID to compute

digest 1

Error handle

End

digest1 == digest2 ?

 Y

N

MCU use key and HASH

chip s UID to compute

digest 2

AN073
Proper use of UID for firmware protection

19

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Oct.28 2022

AN073
Proper use of UID for firmware protection

20

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

l imited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any l iability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibil ity of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary busi ness,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

l ife-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and sel ling

the Products in accordance with the applicable laws and regulations. The Company is not l iable, in whole or in part, and customers

shall and hereby do release the Company as well as it ’s suppliers and/or distributors from any claim, damage, or other l iability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it ’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for persona l injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Application scenario and capability analysis
	2.1. Application scenario
	2.2. Capability required for code

	3. Process methods
	3.1. Overview
	3.2. Use special peripherals
	3.3. Improve design method
	3.4. Add redundant code
	3.4.1. Reference Implementation 1
	3.4.2. Reference Implementation 2

	3.5. Software encryption
	3.6. Encryption chip

	4. Revision history

